Structure and Intermolecular Interactions between L-Type Straight Flagellar Filaments.
نویسندگان
چکیده
Bacterial mobility is powered by rotation of helical flagellar filaments driven by rotary motors. Flagellin isolated from the Salmonella Typhimurium SJW1660 strain, which differs by a point mutation from the wild-type strain, assembles into straight filaments in which flagellin monomers are arranged in a left-handed helix. Using small-angle x-ray scattering and osmotic stress methods, we investigated the structure of SJW1660 flagellar filaments as well as the intermolecular forces that govern their assembly into dense hexagonal bundles. The scattering data were fitted to models, which took into account the atomic structure of the flagellin subunits. The analysis revealed the exact helical arrangement and the super-helical twist of the flagellin subunits within the filaments. Under osmotic stress, the filaments formed two-dimensional hexagonal bundles. Monte Carlo simulations and continuum theories were used to analyze the scattering data from hexagonal arrays, revealing how the bundle bulk modulus and the deflection length of filaments in the bundles depend on the applied osmotic stress. Scattering data from aligned flagellar bundles confirmed the theoretically predicated structure-factor scattering peak line shape. Quantitative analysis of the measured equation of state of the bundles revealed the contributions of electrostatic, hydration, and elastic interactions to the intermolecular forces associated with bundling of straight semi-flexible flagellar filaments.
منابع مشابه
A “Mechanistic” Explanation of the Multiple Helical Forms Adopted by Bacterial Flagellar Filaments
The corkscrew-like flagellar filaments emerging from the surface of bacteria such as Salmonella typhimurium propel the cells toward nutrient and away from repellents. This kind of motility depends upon the ability of the flagellar filaments to adopt a range of distinct helical forms. A filament is typically constructed from ~30,000 identical flagellin molecules, which self-assemble into a tubul...
متن کاملStructural Changes of the Paraflagellar Rod during Flagellar Beating in Trypanosoma cruzi
BACKGROUND Trypanosoma cruzi, the agent of Chagas disease, is a protozoan member of the Kinetoplastidae family characterized for the presence of specific and unique structures that are involved in different cell activities. One of them is the paraflagellar rod (PFR), a complex array of filaments connected to the flagellar axoneme. Although the function played by the PFR is not well established,...
متن کاملStraight and rigid flagellar hook made by insertion of the FlgG specific sequence into FlgE
The bacterial flagellar hook connects the helical flagellar filament to the rotary motor at its base. Bending flexibility of the hook allows the helical filaments to form a bundle behind the cell body to produce thrust for bacterial motility. The hook protein FlgE shows considerable sequence and structural similarities to the distal rod protein FlgG; however, the hook is supercoiled and flexibl...
متن کاملCharacterization of intermolecular interaction between Cl2 and HX (X=F, Cl and Br): An ab initio, DFT, NBO and AIM study
The character of the intermolecular interactions in Cl2-HX (X =F, Cl and Br) complexes has been investigated by means of the second-order Möller–Plesset perturbation theory (MP2) and the density functional theory (DFT) calculations. The results show that there are two types of lowest interaction potential equilibrium structures in the interactions between Cl2 and HX: X∙∙∙Cl type geometry and hy...
متن کاملEvidence for the hook supercoiling mechanism of the bacterial flagellum
The bacterial flagellar hook is a short, highly curved tubular structure connecting the basal body as a rotary motor and the filament as a helical propeller to function as a universal joint to transmit motor torque to the filament regardless of its orientation. This highly curved form is known to be part of a supercoil as observed in the polyhook structure. The subunit packing interactions in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 112 10 شماره
صفحات -
تاریخ انتشار 2017